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Frequency-bin quantum information encoding offers an intriguing synergy with classical optical networks, with the
ability to support many qubits in a single fiber. Yet, coherent quantum frequency operations prove extremely chal-
lenging due to the difficulties in mixing frequencies arbitrarily and with low noise. In this paper, we address such
challenges and implement distinct quantum gates in parallel on two entangled frequency-bin qubits in the same
optical fiber. Our basic quantum operation controls the spectral overlap between adjacent spectral bins, allowing
us to observe frequency-bin Hong–Ou–Mandel interference with a visibility of 0.971� 0.007. By integrating this
tunability with frequency parallelization, we synthesize independent gates on entangled qubits and flip their spectral
correlations, allowing us to observe strong violation of the separability bound. Our realization of closed, user-defined
gates on frequency-bin qubits in parallel should find application in the development of fiber-compatible quantum
information processing and quantum networks. © 2018 Optical Society of America under the terms of the OSA Open Access

Publishing Agreement

https://doi.org/10.1364/OPTICA.5.001455

1. INTRODUCTION

Quantum information encoding in optical frequency offers an
intriguing possibility for quantum computing both on chip and
over distributed fiber networks. Considerable progress has been
made in generating two-photon entanglement across a comb
of narrowband frequency modes, or bins, including optical para-
metric oscillators below threshold [1], filtering of broadband para-
metric downconversion [2], and, recently, on-chip production of
quantum frequency combs using microring resonators [3–6].
Likewise, research in quantum frequency conversion has show-
cased coherent translation of single-photon states across both
wide [7,8] and narrow [9] bandwidths.

Moving beyond entangled-state production and single-photon
frequency manipulation to full-fledged quantum information
processing in frequency-encoded qubits, a crucial experimental
capability is missing. First and foremost, one must be able to
apply independent and distinct gates efficiently and with low
noise to multiple qubits on demand. In this paper, we demon-
strate that tunable and independent single-frequency-qubit oper-
ations can be implemented in parallel on co-propagating qubits.
Specifically, we realize a qubit operation that can be tuned
smoothly between the identity 1 and HadamardH gates and that
can realize any combination thereof in parallel in the same device.

We characterize this operation’s tunability with frequency-bin
Hong–Ou–Mandel (HOM) interference, obtaining 97% visibil-
ity for distinct frequency bins, the highest yet observed for pho-
tons of different colors. We then implement this operation as two
separate quantum gates on frequency-bin qubits within the same
fiber-optic mode, obtaining a high-fidelity flip of spectral corre-
lations on two entangled photons. Our results demonstrate multi-
ple functionalities in parallel in a single platform, representing an
important step forward for quantum information processing in
the frequency domain.

2. BACKGROUND

Interest in frequency-based photonic quantum information
processing has grown significantly in recent years. When selected
properly, the frequency degree of freedom is compatible with op-
tical fiber and valuable for scaling up quantum memories [10],
and potentially large amounts of information can be stored in
single photons in spectro-temporal modes [11–14]. Yet, while
frequency multiplexing is fairly straightforward in the quantum
domain, universal quantum gate sets in frequency space are
much more challenging to implement. As important milestones,
frequency beamsplitters, based either on optical nonlinearities
[15–17] or electro-optic modulation [18,19], have shown
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coherent interference of frequency-encoded photons, and quan-
tum pulse gates [12,20–23] based on mixing single photons with
shaped control fields have allowed state discrimination of
orthogonal time-frequency pulsed modes. Yet, the ability to per-
form distinct and controlled operations simultaneously across
several qubits in the same spatial mode has thus far remained elu-
sive. Nonlinear-optics-based approaches offer such a capability in
theory by using multiple strong pump fields. However, the pros-
pects of scaling such approaches with low noise to two or more
qubits are uncertain. Alternatively, a fully linear-optic scheme for
quantum information processing with time-bin encoding has also
been developed [24]. While in principle enabling universal quan-
tum computing in a single spatial mode, its requirement of fast
polarization rotation—or alternatively, long birefringent delay—
makes it challenging to realize in its pure, single-spatial-mode
form. Indeed, the seminal experimental implementation enlisted
ancillary spatial modes for time/polarization conversion, so a fully
single-spatial-mode realization is still missing [24]. Finally, in the
case of frequency-bin encoding, electro-optic approaches such as
the one we pursue here excel at performing the same low-noise
quantum gate on multiple qubits in parallel but so far have been
unable to perform different gates concurrently.

Yet, of the frequency-bin processing approaches available, the
combination of electro-optic phase modulators (EOMs) and
Fourier transform pulse shapers [25] seems well suited for remov-
ing this limitation and scaling up frequency-based quantum
networks. This paradigm is sufficient for universal quantum com-
puting, requires no optical pump fields, has low noise, and accepts
broadband inputs without the need for tailored phase matching
[18,26]. Even more importantly, the fact that pulse shapers apply
arbitrary phase shifts to each frequency mode suggests the pos-
sibility of synthesizing different frequency-bin gates on two qubits
in parallel, even when they experience the same temporal modu-
lation from the EOMs. As we demonstrate in the following, this
intuition is indeed correct; by adjusting only spectral phase, we
can realize fully controlled and independent operations in parallel
on spectrally separated qubits.

3. CONCEPT OF OPERATION

Figure 1 sketches an example of how such principles could be
applied in a parallel frequency processor, with the particular op-
erations chosen to match the experiments in this paper. In general,
an input quantum state consisting of frequency-encoded qubits is
manipulated by the designed network of EOMs and pulse
shapers, which applies various unitary operations to combinations
of frequency bins. Conceptually, each EOM serves as a frequency
mode mixer, while the specific phase patterns applied by each
pulse shaper enable either constructive or destructive interference
in different frequency bins at the subsequent EOM. The use of
EOMs and pulse shapers is thus analogous to the beamsplitters
and variable retarders in spatial/polarization optical multiports,
with the key difference being that while the standard spatial ap-
proach builds on two-mode beamsplitters, each EOM interferes
all modes simultaneously. Therefore, a more precise spatial equiv-
alent to each EOM would be a multimode coupler instead of a
beamsplitter. Finally, as in the spatial case, feed-forward opera-
tions are compatible here as well; after each step in the quantum
frequency processor, a subset of modes could be extracted with
optical add-drop multiplexers and measured, with the results
used to update operations downstream. Note that, although

we draw each frequency bin as a separate “rail” for conceptual
purposes, the physical encoding occurs within a single fiber-
optic spatial mode, thereby enabling natural phase stability and
providing compatibility with current fiber networks. This vision
is considerably more broad than our previous experiments on fre-
quency beamsplitters and tritters [18], for it exploits quantum
entanglement (i.e., nonclassical two-qubit, rather than just
single-qubit, effects) and realizes different operations in the same
device simultaneously, rather than the same operation in parallel
over many modes—a valuable, though less general, form of
parallelizability [18].

Any pair of distinct quantum gates that can be implemented in
parallel in our approach must satisfy two requirements: (i) their
physical implementations must differ only in the spectral phase
applied by each, since the temporal modulation is shared by all
frequency-bin gates in a single spatial mode, and (ii) they must be
able to be realized independently in two frequency bands without
crosstalk. These considerations are general, holding for any pro-
posed set of parallel gates. Yet in the particular example we con-
sider here, a tunable frequency beamsplitter, we can connect these
two requirements directly to nonclassical phenomena of particular
significance in quantum photonics: HOM interference [27] and
the Einstein–Podolsky–Rosen (EPR) paradox [28].

In the conventional HOM interferometer, two photons mixed
on a 50/50 spatial beamsplitter bunch, never exiting in different
output ports. A general feature of bosons, HOM interference
forms the basis of essentially all two-qubit gates in linear optics
[29]. In our case, the overlap between frequency bins is set by the
spectral phase of the quantum frequency processor, so that HOM
interference relies precisely on the ability to tune a given operation
through spectral phase control alone; in other words, high visibil-
ity provides confirmation of requirement (i) above. Similarly,
quantum mechanics allows two particles to share a well-defined
pure state, even when the individual states of both particles are
mixed. This property gives rise to EPR correlations when the joint
state of the two particles is measured. While paradoxical to
classical notions of reality [28], these correlations ultimately

Fig. 1. High-level vision of quantum frequency processor. Single pho-
tons (spheres) populating a comb of frequency bins propagate through a
parallelized network of quantum gates (boxes) performing the desired set
of operations. Spheres of a specific color trace the probability amplitudes
of a single input photon, so that an ideal measurement will register pre-
cisely one click for each color. Frequency superpositions are represented
by spheres straddling multiple lines, while entangled states are sums of
photon products (visualized by clouds containing spheres of the same pair
of colors). The specific operations are those we realize experimentally:
HOM interference (top) and parallel single-qubit rotations (bottom).
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underpin Bell tests of nonlocality [30] and security in quantum
key distribution [31]. Meeting requirement (ii) above signifies the
ability to perform independent gates on entangled frequency-bin
qubits. In particular, joint beamsplitter operations with different
phases enable the realization of all combinations of Pauli Z and X
basis measurements, which are sufficient for testing EPR corre-
lations. Consequently, in the following experiments we utilize
both quantum phenomena (HOM and EPR) as important test
cases to assess gate performance.

4. EXPERIMENTAL RESULTS

Figure 2(a) shows our setup for processing quantum information
encoded in frequency. Our test source of entanglement is a bipho-
ton frequency comb (BFC) generated by pumping a periodically
poled lithium niobate (PPLN) waveguide with a continuous-wave
Ti:sapphire laser and filtering the broadband emission with an
etalon to produce frequency bins. The resulting state is of the
form jΨi � P

n≥1cnj1ω1−n
iAj1ωn

iB , where the coefficients cn
are set by a pulse shaper (BFC shaper). Each frequency-bin index
n corresponds to the filter centered at ωn � ω0 � nΔω, where
ω0∕2π � 193.6000 THz (International Telecommunication
Union channel 36 at 1548.51 nm) and Δω∕2π � 25 GHz.
Party A is assigned all modes nA ∈ fn ≤ 0g, while the rest are

given to B (nB ∈ fn ≥ 1g). In Fig. 2(b), we plot the measured
frequency correlations of this source, obtained by bypassing
the quantum frequency processor (QFP), scanning the filters
of the output wavelength-selective switch, and counting coinci-
dences between two detectors. Over this 50 × 50 mode grid,
we observe high coincidence counts only for frequency-bin pairs
satisfying nA � nB � 1, as expected by energy conservation. The
processor itself consists of a pulse shaper sandwiched between two
EOMs. Each EOM is driven by a 25 GHz sinusoidal voltage,
while the pulse shaper imparts a user-defined phase to each spec-
tral bin; this combination was shown to enable a frequency
Hadamard gateH with 99.998% fidelity and only 2.61% photon
leakage into neighboring modes [18].

By modifying the spectral phase applied by this H gate, or
frequency-bin beamsplitter, we can realize the desired tunable
quantum operation forming the basis for distinct parallel gates.
As we have discovered, changing the depth of the phase shift im-
parted by the pulse shaper between frequency bins 0 and 1 allows
the spectral reflectivity R to be tuned smoothly from 0 to ∼0.5
and back to 0; see Supplement 1 for details. Figure 3(a) plots the
theoretically predicted (curves) and experimentally measured
(symbols) beamsplitter transmission and reflection coefficients
between bins 0 and 1, when probing the system with a laser and
scanning the shaper phase. A phase setting of π results in an H
gate; 0 and 2π phase shifts yield an identity operation. It is im-
portant to emphasize that both EOMs remain fixed throughout
the scan, so that the tunability is effected only by adjusting the
phase applied by the pulse shaper. This controlled reflectivity can
be tested directly on quantum states via HOM interference. In
general for HOM, one must scan some parameter that controls
the distinguishability of the two-photon probability amplitudes
leading to clicks on both output detectors; a visibility exceeding
50% indicates nonclassicality [27]. In the case of photons of dif-
ferent colors, this interference can be realized with a frequency
mixer [15] where, e.g., the distinguishability is controlled by
introducing a temporal delay between the two input modes [16]
or scanning the photon frequency spacing relative to that of the
frequency beamsplitter [19,32]. Here we adjust the mixing prob-
ability of the operation itself, as controlled by the phase scanned
in Fig. 3(a), analogous to varying the reflectivity of a spatial
beamsplitter.

Sending in the photon pair j1ω0
iAj1ω1

iB and scanning the
QFP pulse shaper phase, we measure the coincidence counts
between output bins 0 and 1 shown in Fig. 3(b). The solid curve
is the theoretical prediction, scaled and vertically offset to match
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the data points via linear least squares; the visibility obtained from
this fit is 0.971� 0.007, with the reduction from unity com-
pletely consistent with the accidentals level expected for our
measured counts and timing resolution. This visibility far ex-
ceeds the previous values measured for frequency-domain HOM
interference without subtraction of accidentals [33]—namely,
0.71� 0.04 [16] and 0.68� 0.03 [32]. Such a significant im-
provement in visibility can be explained by the reduced optical
noise present in our electro-optic-based approach, compared to
those relying on powerful pump fields, as well as the fine control-
lability of our operation, enabled by the purely electrical control
parameters (i.e., microwave power, microwave phase, and pixel
voltages for the pulse shaper), which allows us to precisely opti-
mize the spectral overlap between the two modes.

We also record the singles counts for bins 0 and 1, as well as
the adjacent sidebands (−1 and 2). As shown in Fig. 3(c), the two
central modes retain nearly constant flux across the full scan,
showing that the dip in coincidence counts results from truly
quantum HOM interference as opposed to photon loss; see
Supplement 1 for a further discussion on this point. Moreover,
the small reduction in singles counts around π—accompanied
by the increase in singles counts for bins −1 and 2—also quali-
tatively matches expectations, given the fact that the full H gate
scatters 2.61% of the input photons out of the computational
space into adjacent sidebands. We note that even this scattering
could be removed by driving the EOMs with more complicated
waveforms [26]. Indeed, the deterministic nature of our tunable
frequency beamsplitter sets this HOM experiment apart from al-
ternatives using a single EOM, which can only overlap adjacent
bins probabilistically, due to higher-order scattering into sideband
modes [19]. While perfectly acceptable for HOM interference
per se, such extra scattering proves inadequate for our goal
here—general-purpose quantum information processing—where
HOM interference serves as a building block within larger linear-
optical gates. In this context, limiting scattering into extraneous
frequency bins is critical to facilitate high success probability.

Our quantum operation’s tunability, invoked in the above
realization of HOM interference, can then be applied to realize
two different gates—that is, distinct pairs of R and T in
Fig. 3(a)—by setting different phase shifts on appropriate sub-
bands in the pulse shaper’s bandwidth. To demonstrate this, we
set the BFC shaper to pass modes f−4, − 3, 4, 5g [cf. Fig. 2(b)],
preparing the input entangled state jΨi ∝ j1ω−4

iAj1ω5
iB�j1ω−3

iAj1ω4
iB . On each pair of frequency bins—f−4, − 3g and

{4, 5}—we set the spectral phase to apply either the identity 1
or Hadamard H gates and then measure coincidence counts
between the frequency bins at the output. Figure 4 furnishes the
results for all four combinations of 1 and H . When the two gates
match, near-perfect spectral correlations result [Figs. 4(a) and
4(d)], whereas mismatched cases produce uniform population
of the two-qubit space [Figs. 4(b) and 4(c)]. By measuring cor-
relations in adjacent bins as well, we confirm the self-contained
nature of our operation; even in the worst case [Fig. 4(d)], less
than 6% of the total coincidences lie outside of the 2 × 2 sub-
space, whereas similar state manipulation with only one EOM
suffers from high probability of qubit scattering [5,6,19]. The loss
of photon energy to unwanted sideband modes is intrinsic to
frequency-bin operations based on a single EOM (see discussion
in Ref. [18]). Thus, they are inherently nondeterministic and
can be viewed at best only as postselected single-photon gates.

While sufficient for the projective-type measurements required
in, e.g., state tomography and Bell-inequality tests [5,6], such
frequency-bin operations cannot be classified as gates in the sense
of performing coherent rotations within a fixed input/output
Hilbert space. By contrast, the manipulations shown in Fig. 4
do represent frequency-bin gates in this proper sense, and thus
offer potential in constructing more general quantum information
processing networks. In particular, because our frequency-bin op-
erations retain photons in their respective computational spaces,
they can be concatenated in systems containing several successive
gates, without the massive reduction in success probability inher-
ent to previous approaches.

Importantly, we note that the transition from 1A ⊗ 1B
[Fig. 4(a)] to HA ⊗ HB [Fig. 4(d)] actually flips the correlations
entirely, eliminating the negative frequency dependence resulting
from pump energy conservation in favor of a positive dependence.
Similar conversion of spectral correlation has been demonstrated
for continuous frequency-entangled photons, via nonlinear mix-
ing with a tailored optical pump pulse [34]. In our example, we
show how the frequency entanglement in discrete bins can be
likewise manipulated, now with an electro-optic-based approach.
This demonstration of two single-qubit rotations that are closed
in the four-dimensional frequency-bin computational space is
essential for the ideal two-level logic underpinning qubit-based
forms of quantum information processing.

And so, looking toward prospects for scaling up our parallel
gates, we note that extension in the frequency dimension is
straightforward; just as we have realized identical frequency
beamsplitters over the entire optical C-band [18], one should be
able to synthesize these more general operations over the full
∼40 nm pulse shaper bandwidth with negligible reduction in
fidelity. Similarly, extending from qubit to higher-dimensional
qudit encoding is possible too, in which more general d × d fre-
quency-bin gates can be constructed by the same EOM–pulse
shaper–EOM setup, but with microwave drive signals consisting
of d − 1 single-frequency harmonics [18]. Admittedly, synthesiz-
ing many such harmonics places strong demands on the required
EOM bandwidth, which at present poses practical challenges for
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experimental implementation. This situation suggests that incor-
porating nonlinear optical mixers as well may be useful to bridge
frequency gaps too wide for state-of-the-art modulators; the
intersection of electro-optics and nonlinear optics in the context
of quantum information processing thus appears an interesting
direction for further research.

5. BAYESIAN STATE ANALYSIS

The quality of our state manipulation can be analyzed by equiv-
alently viewing the unitary rotations on our input state followed
by coincidence detection as measurements of the state in bases
other than computational. As one example, we can test the
EPR-like nature of this state using the strong correlations
in two mutually unbiased bases Z and X (gate operations 1
and H ). We define the conditional entropies H�1Aj1B� and
H�HAjHB� as the uncertainty of the measured frequency mode
of A f−4, − 3g given knowledge of B ’s result {4, 5} for the two
cases of matched transformations [Figs. 4(a) and 4(d)]. Retrieving
the probabilities from the raw counts via Bayesian mean estima-
tion (BME) with no accidentals subtraction, we recover
H�1Aj1B� � 0.19� 0.03 and H�HAjHB� � 0.29� 0.04. The
entanglement can be quantified by violation of the Maassen–
Uffink bound for separable states: H�1Aj1B� �H�HAjHB� ≥
qMU [35,36]. In our case, the bound qMU is computed to be
0.971, just smaller than 1 because of slight imbalance in our
H operation (see Supplement 1 for details). With the sum,
H�1Aj1B� �H�HAjHB� � 0.48� 0.05, we thus violate the
qMU bound by 9.8 standard deviations, providing a clear witness
of entanglement in our system.

Moreover, BME allows us to estimate the full density matrix
from just the four measurements in Fig. 4, with any missing
tomographic information reflected naturally in the retrieved un-
certainty [37,38]. The operations above—1 and H followed by
frequency-bin detection—are equivalent to measurements in the
Pauli Z and X bases, respectively. Using this information, BME
produces the density matrix ρ̂ in Fig. 5: the mean values of the
real and imaginary components are plotted in Figs. 5(a) and 5(b);

their associated standard deviations are shown in Figs. 5(c) and
5(d) (see Supplement 1 for model details). The power of Bayesian
inference is particularly evident in the error. It is extremely low for
the real elements, due to our complete coverage of the Z and X
bases, yet much larger on several of the imaginary components,
as expected given the absence of results in the Pauli Y basis.
Since physical requirements do bound this error, we can still
strongly bound our estimate of the fidelity compared to the ideal
state jΨ�i ∝ j1ω−4

iAj1ω5
iB � j1ω−3

iAj1ω4
iB . Specifically, the

Bayesian estimate is F � hΨ�jρ̂jΨ�i � 0.92� 0.01. This re-
sult provides positive corroboration of our frequency-bin control
and is fairly conservative, given that: (i) dark counts are not re-
moved and thus can degrade the state, and (ii) we intentionally
lump any imperfections in our system onto the state itself, so that
impurities in either the input state or quantum frequency proc-
essor will contribute to a lower F. Such findings demonstrate the
utility of our quantum frequency processor for manipulating joint
quantum systems coherently and independently, preserving a
state’s built-in entanglement in the process—an essential func-
tionality in frequency-bin qubit control.
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